The Path to Full Employment and Equity

Edited by
Ellen Carlson and William F. Mitchell

The Economic and Labour Relations Review
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>Ellen Carlson and William F. Mitchell</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Exchange Rate Policy and Full Employment</td>
<td>Warren Mosler</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Public Service Employment: Full Employment Without Inflation</td>
<td>L. Randall Wray</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Full Employment and the Value of Money: The Implications of 'Exogenous Pricing' for an ELR Program</td>
<td>Edward J. Neil</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>Full Employment and Economic Flexibility</td>
<td>Mathew Forstater</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>The Job Guarantee in a Small Open Economy</td>
<td>William F. Mitchell</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>Full Employment, A Neglected, But Indispensable and Feasible Human Right</td>
<td>John Nevile and Peter Kriesler</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>Unemployment, Inequality and the Political Economy of Redistribution</td>
<td>Stephen Bell</td>
<td>137</td>
</tr>
<tr>
<td>9</td>
<td>The Youth Labour Market: Anecdotes, Fables and Evidence</td>
<td>P.N. (Raja) Junankar, Matthew Walle and Grant Belchamber</td>
<td>159</td>
</tr>
<tr>
<td>10</td>
<td>Labour Market Deregulation and Gender Equity in the Australian Workforce: Complementary or Incompatible?</td>
<td>John Burgess, Glenda Strachan and Martin J. Watts</td>
<td>187</td>
</tr>
</tbody>
</table>

List of Contributors 215
This volume contains the proceedings of a conference held to mark the founding of the Centre of Full Employment and Equity (CoffEE), an official research centre at the University of Newcastle, Australia. The conference was held on December 3-4, 1998, at the University of Newcastle. Nine of the papers presented at the conference are presented here. They cover both theoretical and practical perspectives of Australian and international experience. All nine papers were subjected to the usual refereeing process.
from the exchange rate. Fixed exchange rates require ‘capital controls’, that is, controls on what are called ‘short-term capital movements’, but are better thought of as money creation and movement. Most of this is speculative and is managed by banks and other financial institutions.

References

5 Full Employment and Economic Flexibility
Mathew Forstater

1. Introduction
Flexibility is a desirable feature of an economic system. Structural rigidities can result in sluggish growth and inflationary pressures. Many economic models, however, display considerable system flexibility because of the use of unacceptably unrealistic assumptions. The primary ‘real-life’ features endowing the system with flexibility are unemployment and excess capacity. While realistic, unemployment is economically costly and socially undesirable. In economic theory, there appears to be a trade-off between flexibility and realism. In reality, there appears to be a trade-off between flexibility and full employment. What has not been adequately recognised, however, is the degree to which policies are available that can promote higher levels of employment – and even full employment – without resulting in deleterious rigidity.

2. The Importance of Flexibility
The term ‘flexibility’ has become something of a buzzword. It is often used in different ways and its meaning can be unclear.1 Flexibility here refers primarily to the elasticity of the production system, the adaptability of the production system in the face of structural and technological changes, such as capital- or labour-saving technical innovations, changes in labour supply or the supply of natural resources, and changes in the composition of final demand. A viscous system will have trouble adapting quickly to such changes and thus may be characterised by bottlenecks in production, sluggish growth, inflationary pressures, significant structural, frictional, and technological unemployment, and stretches of underutilisation of plant and equipment. Conversely, the more elastic the
production system, the better the system is able to respond to structural and technical change without resulting in structural rigidities. Such a climate is more conducive to high employment economic growth without inflation.

An investigation of the conditions and policies promoting full employment and non-inflationary growth must therefore be concerned with factors determining the elasticity of the production system. Two main distinctions among factors endowing the system with flexibility must be made. First, in the models that inform policy analysis, the distinction must be made between realistic and unrealistic factors that provide system flexibility. Models that include unrealistic assumptions giving the system more flexibility than it would otherwise possess provide a misleading depiction of the economic system upon which to base policy. Second, among those factors providing flexibility that are deemed realistic the distinction must be made between those that are economically and socially acceptable and those that are not. In particular, unemployment and excess capacity generally may endow the system with an elasticity that comes at an unacceptably high social and economic cost. Likewise, deregulation of, or a laissez-faire attitude toward, ‘dirty’ technologies may result in some flexibility, but may harm the environment and human health.

3. The Unreality of Flexibility in Standard Economic Models

A number of assumptions in standard economic models that endow the productive system with flexibility appear to be quite unrealistic. Their usefulness for understanding current economic challenges and formulating effective policies are thus quite limited. It will be useful to catalogue these unacceptable assumptions as a prelude to a discussion of flexibility and rigidity in actual economic systems.

The flexibility of the production system is ensured in standard neoclassical theory by a whole host of assumptions. Interestingly, the same basic set of assumptions that are purported in the neoclassical view to guarantee an inherent tendency to full employment also guarantee perfect flexibility of the system at full employment. Prices (including factor prices) are fully flexible, and prices correctly convey information that economic agents with full knowledge instantaneously respond to in predetermined ways. Factors of production are perfectly mobile, perfectly divisible, perfectly substitutable, and homogeneous. The principle of substitution likewise dominates the analysis of consumer behavior. There is no uncertainty or historical time. Thus the system instantaneously and easily adjusts to structural and technological change. The production system, even at full employment of all resources, is fully flexible. As Basu has remarked, “In standard neoclassical models, flexibility is unimportant because it is total” (1995: 64).

Models in which commodities may be used as either capital goods or consumption goods will exhibit an unrealistically high degree of flexibility (e.g., Solow 1967). Adjustments come easily, as a reduction of consumption is an increased capital stock (Amendola and Gaffard 1988: 26). An initial rigidity is therefore introduced when this assumption is relaxed and a distinction is made between consumption goods and capital goods (Gehrke 1997: 211).

As long as capital goods are still assumed to be homogeneous, however, the system will still display an unrealistically high degree of flexibility, as in a Hicks (1965) tractor and corn model where tractors and labour combined in different proportions produce both tractors and corn. In this case, capital goods cannot be increased simply by reducing consumption, but means of production can be moved freely between the two sectors and thus “the fundamental ‘adjustment mechanism’ does not have to change drastically” (Gehrke 1997: 211; cf. Amendola and Gaffard 1988: 27).

Finally, for present purposes, the exclusion of natural resources or the assumptions of free and/or unlimited natural resources and/or free waste disposal (as in, among other approaches, von Neumann type models and activity analysis) also abstract from increasingly significant issues with implications for production decisions, choice of technique, and system flexibility and rigidity. Increasing concern with the sustainability of particular technological decisions and the environmental impact of specific productive activities and technologies means such assumptions disregard the potential importance of these present and future constraints. They may therefore depict adjustment as free of these types of hitches and so as unrealistically smooth.

The significant flexibility or elasticity of the production system depicted in many standard models comes at the cost of unrealistic assumptions. These models thus serve as a weak basis for economic analysis and public policy, particularly as relates to these very issues of the rigidity or flexibility of the system. One commodity models, models with non-specific capital goods, models with perfect information, models conducted in notional or logical time, models with perfectly divisible, mobile, substitutable, and homogeneous factors of production will all exhibit an unrealistically high degree of flexibility. Analysis of adjustment processes crucial to economic growth and macroeconomic problems of un-
employment and inflation based on these kinds of models will therefore be of limited use.

4. Flexibility at What Cost?: Unemployment and Excess Capacity

An important ‘real-life’ factor endowing the system with flexibility appears to be unemployment and excess capacity generally. Capitalist systems gain flexibility by sacrificing full employment. Excess capacity and labour unemployment are reproduced in a differing manner, however, and have different social and human costs and structural implications.

Competition necessitates that firms be prepared to capture new sales should such opportunities arise. If there is an unexpected increase in demand firms that want to capture some of the potential sales must be able to increase output without having to build new capital equipment that takes considerable time (Steindl 1952). Thus firms plan reserve capacity. They build above and beyond the scale required to meet normal expected demand, so they can meet peak and unexpected demand. This is planned excess capacity, in excess of the capacity associated with the normal operating level. Firms that are unable to respond to new opportunities for higher sales will lose out to firms that are prepared. Every firm, however, will not be successful in capturing the new sales, even if they all carry reserve capacity. This means that reserve capacity at the firm level translates into excess capacity at the industry and economy-wide levels (Nell 1991).

Excess capacity adds to system flexibility. It enables bursts of capital accumulation to take place that otherwise would be foregone due to structural rigidities that result in production bottlenecks. Bottlenecks in key industries, such as the machine-tools industries, can cause economy-wide disruptions and prevent smooth expansion. The system requires flexibility.

While individual firms can plan reserve capacity when making decisions concerning the scale of plant and equipment, they cannot (with some exceptions) maintain labourers on the payroll who will not be required when operating at normal capacity. But the ability to respond requires not only reserve capacity in terms of capital equipment, it also requires the ability to hire additional workers to add on production lines or work additional shifts. Capitalism has historically reproduced reserve pools of labour at the system-wide level rather than at the firm level.

Reserve pools of labour have historically served several purposes. Most of these fall under the categories of flexibility and stability. A reserve army of unemployed helps hold down wages by weakening the bargaining position of labour. The reserve army increases system flexibility by providing a pool of labour from which firms can draw during expansions. It has also been argued that the reserve army of unemployed serves to discipline workers (Kalecki 1943; Shapiro and Stiglitz 1984).

Different explanations have been offered concerning how the reserve army is reproduced at the system level. Marx and others root the reproduction of the reserve army in endogenous technical change. As accumulation takes place, the reserve army shrinks, pushing up wages and cutting into capitalists’ profits. Competition forces firms to introduce labour-saving technologies, displacing workers and causing the reserve army to expand, taking the pressure off wages. The efficiency wage hypothesis posits wages above the equilibrium level resulting in neoclassical unemployment. Alternative views include the maintenance of unemployment by political means (Kalecki 1943; Boddy and Crotty 1975).

Unemployment and excess capacity are important sources of system flexibility in real economic systems. This flexibility, however, comes at a high social and economic cost. Enforcing some target rate of unemployment through, for example, tightening monetary policy and/or a tight fiscal stance, assigns workers and their families to poverty and/or other forms of assistance. In taking such a position central banks, national governments, and international organisations betray the commitment to full employment made by many countries in the post-WWII period and embodied in their own legislation as well as a number of proclamations of the United Nations supporting the right to work as a fundamental human right (Harvey 1989).

In addition to the ethical and legal obligation of countries to promote full employment, the direct and indirect social and economic costs of unemployment have been shown to be unacceptably high. Unemployment causes permanent losses in potential output of goods and services; losses of tax revenues; higher government spending in the form of various types of assistance; economic, social, psychological and other problems resulting in crime, ill health (physical and mental), divorce, suicide, etc.; deterioration of labour skills and productivity; and more (see, e.g., Jahoda 1982; Kelvin and Jarrett 1985). The argument that unemployment threatens social stability may also be included here. Quite simply, a compelling argument can be made that the benefits of full employment outweigh the costs of its achievement, and that unemployment, rather than inflation, ought to be viewed as ‘Public Enemy Number One’ (see, e.g., Hughes...
and Perelman 1984; Dawson 1992; Moosa 1997; Piachaud 1997).

Flexibility cannot be achieved through assumptions that have no basis in real economic systems. Flexibility should not be achieved through the enforcement of unemployment. It will be useful then to examine a simple model that rejects the idealisations of standard analysis and at the same time takes full employment as a stipulated macroeconomic goal. The question of whether full capacity utilisation should be an additional economic goal or could be realised if it were also stipulated will remain open for now, but the model will include full capacity utilisation as an additional requirement. Thus the model will explore the conditions under which full employment and full capacity may be maintained in the face of structural and technological change.

5. Structural Analysis and System Rigidity

Rejection of the assumptions of standard analysis results in a very different depiction of the production system. Capital goods are highly specific and in no way necessarily shiftable between different lines of production. Means of production are not highly divisible or substitutable, if at all. Economic processes take place in historical time; there are no instantaneous adjustments. There is a significant amount of uncertainty regarding the future, and the past is unchangeable.

Modern economies are interindustry system, with complex sectoral interdependencies such as are described in input-output analyses. Even analyses that are not as disaggregated as input-output models, however, can highlight the sectoral interdependence and interindustry linkages and their implications. Here, Lowe's (1952; 1955; 1976) three-sector model will be employed to highlight the physical and technical nature of the sectoral relations and their implications for the analysis of structural rigidity in the face of structural and technological change.

Lowe's model, while fundamentally of the 'horizontally-integrated' variety, contains an important element of vertical integration as well. It begins with a technical sequence of production depicting working capital moving through a series of successive stages en route to becoming final output. For example, we can follow working capital through a series of transformations, such as cotton-yarn-cloth-dress in dress production or wheat-flour-bread in the production of bread. At each stage, labour (N), fixed capital (F), and natural resources (R), combine to produce the working capital (w) as output:

\[
N_1 \cup F_1 \cup R_1 \rightarrow w_1 = \text{cotton} \\
N_2 \cup F_2 \cup R_2 \cup w_1 \rightarrow w_2 = \text{yarn} \\
N_3 \cup F_3 \cup R_3 \cup w_2 \rightarrow w_3 = \text{cloth} \\
N_4 \cup F_4 \cup R_4 \cup w_3 \rightarrow w_4 = \text{dress}
\]

Capital letters indicate stocks, lower case indicate flows. Output at the last stage is a final good.

It is clear that at every stage except the first, the working capital which was the output of the previous period, w_{t-1} is also an input. In this picture, working capital appears as depicted in the 'Austrian' linear view: the process can be traced back from the final output through each intermediate stage to an initial stage in which no working capital had been taken over from a previous stage. The picture, however, as thus far presented, does not explain the origin of the fixed capital. In addition, mere accounting for the origin of fixed capital would only suffice to guarantee temporary provision; permanency or continuity of production requires the ongoing replenishment of stocks undergoing wear and tear in the production process and thus a second sector in which fixed capital equipment is produced and reproduced.

Thus if F_1 through F_4 are identified as gin-spindle-loom-sewing machine, a technical sequence of production of several stages may be derived for each, similar in structure to that of dress production, but with inputs of a nature appropriate for the production of the equipment good at hand as final output. The weakness of this 'solution' is immediately revealed, as another production flow will now be required to account for the production of the fixed capital used to produce each of gin-spindle-loom-sewing machine.

Fortunately, the analysis is not mired in an infinite regress, as capital goods are not homogeneous, but they are not perfectly heterogeneous either. Lowe identifies 'machine tools' as capital goods utilised in their own production. Thus, it is sufficient to divide the capital goods sector into Sectors 1 and 2, producing means of production utilised in capital goods production (Sectors 1 and 2 combined) and consumption goods production (Sector 3) respectively. The resulting three-sector model may be used to highlight the obstacles to maintaining full employment and full capacity utilisation in the face of structural and technological change.

The three-sector horizontally-integrated model reveals the relations between the two capital goods sectors and the consumption goods sector:
long run strategy of building capacity in Sector 2. In the course of the
traverse from the initial steady state to the new higher rate, the absolute
levels of output of consumption goods will be lower than they would
have been otherwise (if the economy had maintained its level of expan-
sion at the old rate corresponding to the initial allocation of total output
in Sector 1 between itself and Sector 2).

In the preceding, it was assumed for purposes of exposition that the
labour supply adjusted at exactly the rate required to fully utilise the
capital stock. It should be clear that the results achieved imply that should
the tables now be turned and the question becomes that of maintaining
full employment in the face of an exogenous increase in the rate of
growth of labour supply, a transformation in the structure of real capital
will be required. Specifically, with fixed coefficients of production and
the stipulated requirement of full resource utilisation and steady growth,
the only way to increase production in Sector 3 will be through a "partial
liberation of existing capacity" that requires a temporary fall in the
growth rate of output in that Sector (ibid.). This is because, as has already
been seen, expansion of production in the consumer goods sector requires
increased production in Sector 2. The only way that this can be achieved
and also traverse the path to the new higher rate of growth associated
with the new higher rate of growth of labour supply is to reallocate a
greater proportion of output of Sector 1 away from Sector 2 and toward
itself. Again, "the rate of replacement and expansion of secondary
equipment must fall, with the paradoxical result that, in order ultimately
to increase the output of consumer goods, such output must, to begin
with, be reduced" (ibid.).

The structural-technological conditions for maintaining full employ-
ment and full capacity utilisation in the face of labour- and capital-
displacing technological changes will be analogous to the case of an in-
crease in the rate of growth of labour supply. The clear result of the
analysis is that the primary obstacle to an economy running at full capac-
ity utilisation and full employment in adapting to unexpected changes in
the supply of labour or natural resources, or technological change, is the
inadequacy of the structure of its stock of real capital. "[T]he root of all
these difficulties is technological":

Obstruction of resource shifts, bottlenecks in production, inelasticity of
supply owing to the longue durée of capital formation and even more to
the large costs of sunk capital, these and most other impediments to
smooth expansion are the effect of the large size and the technical
specificity of inputs (Lowe 1976: 9).
Recognition of these physical bottlenecks, rigidities, distortions, and timelags as characteristic of the production system brings to centre stage of structural analysis issues related to the "formation, application, and liquidation of real capital" (Lowe 1976: 10).

Furthermore, an additional constraint on the production system is given by those processes that utilise non-renewable natural resources, or that produce waste of a quality or quantity exceeding the assimilative capabilities of the environment. Some of these constraints may be understood in relation to societal values, while others may be altered due to technological change. In addition, the recycling of production residuals is easily considered within the framework, introducing a certain 'circularity' to natural resources as well. Nevertheless, even with these qualifications, the impact of these factors on the flexibility of the system must be considered.

6. Further Factors Impacting Flexibility
Standard neoclassical theory puts forward an idealised economy where methods of production and factor supplies instantly respond to demand that changes when relative factor prices change. It often assumes a one-commodity world, or homogeneous capital goods. Structural analysis highlights the impediments to rapid adjustment, the structural disequilibria, the disproportionalities, and the physical-technical consistency conditions for system viability (reproduction) that especially confront an economy brought to full employment by, e.g., Keynesian demand management. In neoclassical theory there is a trade-off between flexibility and reality; in structural analysis there is a trade-off between flexibility and full employment of resources.

Before turning to policies that might promote a flexible full employment, mention should be made of several other factors that can lend flexibility to the system.

1) IMPORTS. For any country, bottlenecks in the supply of capital goods or natural resources might be relieved through importing (Worswick 1944; Kurz 1992; Gehrke 1997). This can occur through either direct importation of the needed goods, or the importing of the goods needed to increase domestic production. Of course, such a solution is limited by a number of factors, and is not available for the global system as a whole.

2) SHIFT WORK. Additional shifts may be instituted, up to the point where production is ongoing (Lowe 1976; Kurz 1992; Gehrke 1997). This is limited by a number of factors, including the issue of the time-specificity of some input prices (Kurz 1992). Increasing shifts is also impossible for those firms already engaged in 24-hour production. It is also not viable for an economy operating at full employment of labour without an increase in the labour supply, or without bidding some workers away from other employment. The latter point also means that the 'solution' is zero-sum for the system as a whole.

3) INTENSIFICATION OF PRODUCTION. Various means may be used to try to intensify production (Lowe 1976; Kurz 1992; Gehrke 1997). Intensification has its limits, however, and can result in sloppy work or accidents.

4) RUNNING DOWN INVENTORIES. Of course, to the extent they are available inventories can be run down (Worswick 1944; Kurz 1992; Gehrke 1997). This is a temporary solution, but that can sometimes be enough to avoid a bottleneck.

5) OVERTIME. Overtime can be used (Worswick 1944; Kurz 1992). Here again the problem with using overtime is the impact it has on costs.

6) POSTPONING THE SCRAPPING OF EQUIPMENT OR REACTIVATING EQUIPMENT NOT YET SCRAPPED BUT NO LONGER IN USE. Equipment is often scrapped when it still has some productive potential remaining, and often equipment is deactivated before it is actually scrapped (Gehrke 1997). Thus, more can be squeezed from such equipment, extending production possibilities.

Some or all of the above may be utilised by some firms to extend the elasticity of supply. Some of these solutions may be short-term, some not available, some available only at increasing costs, some never available to an economy operating at full employment, some of a positive yet limited effect. Importantly, the system is ultimately limited by the least flexible industry. In other words, it only takes one necessary input in short supply to make a bottleneck.

In addition, a number of these factors will result in the increase of replacement requirements, thus opening the way for further bottlenecks down the road. Nevertheless, some of these and other factors do give some additional flexibility or potential flexibility to the production system—even one operating at full employment.

In the three sector model, full employment of labour and full capacity utilisation were stipulated in order to exhibit the structural rigidities that characterise such a system. While there are policies to promote full employment of labour, it is not clear what policies would ensure full capacity utilisation. Given the desire for flexibility at the plant or firm level, the system would likely still reproduce some excess capacity even absent
political enforcement policies (the system would not tend to full capacity utilisation just because central banks, national governments, or international agencies suddenly stopped promoting slack). It is not even clear that, despite the potentially negative consequences, true full capacity utilisation would be desirable.

Full employment of labour, however, is both possible and desirable. The problem has been how to maintain the system flexibility and stability that unemployment helps ensure, without the social and economic costs of unemployment. Selective use of discretionary public employment stands out as a viable means of reconciling the contradiction between full employment and flexibility.

7. Toward A Flexible Full Employment
Public sector employment has a number of advantages over other approaches in promoting a flexible full employment. These advantages include those that relate to not only labour, but to capital goods and natural resources as well. They relate to both the input side and the output side of public sector activity. And they regard decisions concerning both the types of activities the public sector engages in and the methods of production the public sector utilises in its activities. In many cases, they also regard the geographic location of those activities, key to minimising human dislocation.

Key to understanding the flexibility of public sector activity is to understand the constraints within which private firms operate. Competitive pressures compel private firms to make decisions based on a narrow set of criteria. Firms must make decisions concerning what activities to engage in and what methods of production to utilise based on their best estimate of the profitability of such a move or decision. Of course, there are a number of issues that come into play here, and we would not want to depict these decisions as simplistic. But in a capitalist economy competitive pressures greatly restrict the degree of discretion that firms have with regard to the line of production they engage in and the methods of production they utilise in any given line of production.

Public sector activity, however, does not have to be concerned with these types of competitive pressures, since government is not in business to make a profit. Government can choose to engage in a line of production that no private firm would engage in. Likewise, the public sector can choose to utilise a method of production that may be different from the method that would be chosen if the decision were based exclusively on narrow ‘efficiency’ criteria, where efficiency is defined as private cost minimisation. Government can make its decisions based on other criteria, such as an assessment of broader macroeconomic concerns or social values. By making its decisions on such alternative criteria, government can positively impact the private sector in a number of ways.

We have seen that full employment of all resources in the private sector is only sustainable in an unrealistically flexible system that does not represent the economy in which we actually live. Unemployment and excess capacity therefore serve to provide the system with the flexibility that permits structural adjustments, sectoral shifts, and low inflation. Used strategically, however, public sector employment and public sector activity can promote flexibility without the high social and economic costs of unemployment.

Key to the policy approach is the distinction between “necessary”, (essential, or regular) public sector activity and employment and what we call here “discretionary” public sector activity and employment. Of course, what is “necessary” and what is not is a matter of social policy and also may change over time, but at any given time there are a set of activities which are considered necessary and which cannot be modified, delayed, or discontinued without harm to the public good. The employees that are engaged in the operation and management of these necessary functions are necessary or regular (i.e., permanent) public sector employees, are paid “at market” and are not part of what is termed “discretionary” public employment.

Designation of employment or activities as “discretionary” does not mean that they provide no public benefit. It means, in essence, that for the time being they are something that society could use or benefit from but could do without, at least for a time. There is no “emergency” character to them, so to speak. Thus, these activities can be undertaken when there is available labour from the private sector, and they can be delayed or discontinued when private sector demand for labour rises. Of course, some functions that are in the “discretionary” category may be redesignated as “necessary” under changing circumstances. Likewise, some public sector activities may be taken up by the private sector.

Labour
The benefits of discretionary public sector employment in promoting flexibility with regard to labour has been perhaps the most emphasised in other literature on the subject. Here the discretionary public sector workers are seen as continuing to function as a ‘reserve army,’ only one that is employed at a living wage. Thus, the discretionary public sector workers continue to be available to the private sector if the demand for labour should increase. Firms need only bid the public sector workers away by
offering them a mark-up over the basic public sector wage, or better benefits, or an opportunity at career advancement, or any other incentive to move into the private sector.

As the private sector demand for labour increases, the discretionary public sector pool will presumably shrink, and as the private sector demand for labour falls, the discretionary public sector pool will presumably rise. The mechanism thus works something like the ‘reserve army,’ but with workers moving between private sector and public sector employment rather than between employment and unemployment. We thus have full employment, without overly tight labour markets.

By ‘employing the reserve army,’ workers who would have been otherwise unemployed can have the opportunity to maintain and enhance their skill and knowledge level, thus providing benefits to the individual workers and the economy as a whole. Increasing skills may lead to higher functional flexibility in the economy, while discretionary public sector employment provides numerical flexibility without relying on unemployment.

Labour market rigidities result from full employment. With guaranteed public sector employment, an element of labour market flexibility is retained without unemployment. Thus firms can maintain a certain flexibility resulting from numerical flexibility, and so add shifts or add workers to production lines, extending elasticity of supply in the firm, and thus to the industry and system as a whole.

Capital Goods

Unemployment of capital goods does not have the same social costs as labour unemployment. Thus it is not necessary to be concerned with idle capital in the same sense as labour unemployment. Schemes that promote increases in labour employment by stimulating private sector activity will also result in higher degrees of capacity utilisation in those industries that experience a higher demand for their product and those industries that provide their inputs. Thus there is a danger of bottlenecks resulting from higher capacity utilisation rates. Such bottlenecks are the source of structural rigidities and inflationary pressures.

Whether the result of higher private sector activity or increased public sector activity, increased demand for capital goods can result in such bottlenecks. In the case of government activity, however, once again government has a greater discretion in choosing which activities to engage in and which methods of production to utilise. Of course, this is for ‘discretionary’ public sector activity. Again, this does not mean that such activity may not be beneficial to the public, but that public sector activity deemed to be ‘essential’ is not subject to the same flexibility.

In choosing what productive activities to engage in, government can consider the general trends in the composition of economic activity and make the decision not to engage in activities that utilise those types of capital equipment that are already in high demand or are in short supply. If the public sector were to engage in activities that utilised such equipment then this could lead to bottlenecks in the same way as higher levels of private sector activity. Since public sector decisions are not driven by competitive pressures, government can simply engage in those activities that utilise equipment for which there is sufficient supply, or where the elasticity of supply is known to be higher. In this way, higher levels of employment of labour are possible with more flexibility than would be the case if the same level of employment were achieved through stimulating demand in the private sector.

There is also the possibility that for some types of capital equipment in short supply at higher levels of economic activity, government could choose to help avoid bottlenecks by increasing productive capacity in that line of production through public sector production. This could entail direct production of the goods in short supply, or the production of the goods required to produce those goods.

It is quite possible for public sector workers to engage in activities that use little or no capital equipment whatsoever, should that be perceived as beneficial in avoiding structural rigidities while promoting full employment. There is a whole spectrum of near pure services that are beneficial to the economy and society, but utilise almost no capital equipment. Much environmental clean up and protection can be conducted with minimal capital equipment, as well as a whole host of other public services. Additional ‘helping hands’ in schools, on playgrounds, in communities, in hospitals, in subway stations, all can provide beneficial services without resulting in increased utilisation of capital equipment.

Natural Resources and Environmental Protection

A similar argument as was made for capital goods can be made for natural resources. Bottlenecks and rigidities can result from pressures on the supply of natural resources, especially non-renewable natural resources. Government can choose to engage in those activities that do not utilise exhaustible resources, or that use them less intensively. Again, this is for “discretionary” activities; obviously for “essential” government services, there is not the same latitude. For basic or discretionary public sector activity, however, there are plenty of socially and economically beneficial
services that do not require the use — or the intensive use — of exhaustible natural resources. Thus, bottlenecks due to increased demand for scarce natural resources do not have to result from higher levels of employment.

The same cannot be said for higher levels of employment that come from increased private sector activity. Whether the result of subsidising wages, or stimulating private sector demand though fiscal and monetary policy, it cannot be claimed that such higher levels of activity will not result in higher or more intensive use of natural resources and that such higher levels of utilisation will not result in inflationary pressures and structural rigidities. Government can choose not to use; with the private sector there is no guarantee.

While the supply of exhaustible natural resources cannot be increased through public sector production in the same way that capital goods might, government does have some ability to further alleviate production bottlenecks through its decisions concerning the composition of discretionary public sector activity. Public sector activity may be devoted to developing renewable substitutes for exhaustible natural resources. Public sector activity may also be devoted to increased recycling efforts that can take pressure off of natural resource supply.

Government also may choose to engage in activities that do not pollute or that pollute less. In this way, pressures on the local and global assimilative capacities of the environment can be relieved or avoided. The assimilative capacity may also be thought of as a natural resource and thus while higher levels of private sector activity may increase utilisation to an extent that results in a variety of pressures, public sector activity can be geared toward activities that do not tax the assimilative capacity of the environment. And just as in the case of natural resources, the public sector can engage in activities that actually enhance the assimilative capacity.

Methods of Production
It is not only through choosing from among alternative projects that government can promote a more flexible full employment, but also by choosing from among alternative methods of production. Whereas private firms are compelled by competitive pressures to choose the profit maximising method of production, government is not constrained by those same pressures. Thus, for any given activity, choice of technique can be based not on private cost minimisation efficiency criteria, but on criteria regarding the impact on the system as a whole.

More labour intensive methods may be utilised, even where more capital intensive methods are available, and might be chosen under different conditions. The key is to utilise those methods that will promote employment and avoid bottlenecks, and even add to the flexibility of the system.

The same principle holds for natural resources as well. Alternative technical means may be utilised to ease pressures on natural resources or the assimilative capacity of the environment. While such technologies or production techniques may not be "optimal" for a private firm, because the government is not constrained by the same pressures of profitability, public sector activity has the possibility of being technically organised according to how the choice of technique impacts the system as a whole.

Geographic Location
It is well known that there are significant regional and local differences in unemployment rates. While firms in the private sector are constrained by competitive pressures in their decisions concerning where to locate, the same is not true of public sector activity.

Of course, there are still constraints to choice location for some public sector activities, but not nearly as much as for the private sector. And while there are certain types of activities that cannot be located just anywhere, there are a large number of activities that have little or no spatial restrictions. This locational flexibility is extended by decreased costs of transportation and expansion and extension of information complexes.

Locational flexibility means that public employment need not cause disruptive dislocation for workers. Workers do not have to migrate to employment opportunities. Rather, employment opportunities can be located where there are unemployed. One factor in facilitating this approach would be to have discretionary public employment programs administered locally.

8. Conclusion
Full employment, or even high employment and capacity utilisation rates, are associated with structural rigidities related to a number of undesirable consequences. For this reason, central banks, national governments, and international organisations have resisted policies that would promote full employment. What has been almost entirely overlooked, however, are the ways in which the selective use of discretionary public employment might promote higher levels of employment without the loss of system flexibility.
A primary reason for overlooking the advantages of public employment has been due to the tendency to evaluate public sector activity by the same criteria that private sector activity is evaluated. But public sector activity serves a different purpose than private sector activity, and so should be evaluated according to different criteria. The public sector is not constrained by the same competitive pressures as the private sector, and therefore has a greater degree of latitude in choosing what activities to engage in, what methods of production to utilise, and where to locate their activities. These characteristics of public sector activity may be utilised to promote higher levels of employment without resulting in rigidities of the production system normally associated with high or full employment. In addition, these same features may also enable these higher levels of employment without undesirable environmental impacts or geographic dislocation of workers.

Notes

1 Applebaum and Schettkat (1990, p. 4) and Olmsted and Smith (1994, pp. 2-3) distinguish between "numerical" and "functional" flexibility. The former refers to firms' ability to fire, hire and adjust the hours of employees, the latter to the breadth of employees' relevant knowledge and skills. Harrison (1994, pp. 129-30) makes the same distinction, but has a broader conception of functional flexibility that includes additional factors such as certain types of technological change and decentralised decision-making. Harrison also discusses "wage flexibility," referring to the use of a variety of bonuses and other incentives. Gordon (1996, p. 249) makes a distinction between "disposability," which is close to numerical flexibility, and "true flexibility," which is offering more flexible schedules and work arrangements for employees that are not compulsory but voluntary. The contributions in Killick (1995) offer a number of different conceptions of flexibility, including "cultural flexibility" which refers to less "resistance to change". The concern here is with elasticity of supply, primarily at the industry level, which these various types of microeconomic categories of flexibility may in part determine.

2 Models by their nature entail abstraction and therefore some amount of 'unrealism.' In addition, the same assumption may be legitimate for some applications but not for others. In what follows, 'realistic' and 'unrealistic' assumptions refer to legitimate abstraction and idealisation, respectively.

3 All of these assumptions are not required to endow the system depicted in the model with a higher degree of flexibility; any of them will likely increase the flexibility of the system.

4 As Georgescu-Roegen (1978, p. 437, quoted in Gehlke 1997, p. 229n7) put it, under this assumption an "increase in the number of bulldozers" follows from "accumulating the abstained consumption of...yogurt".

5 See, for example, Minsky (1986, pp. 308-13), Wray (1997), Mosler (1997-98). Lowe (1988, pp. 109-09) is one of the rare examples of a discussion of flexibility in terms of capital goods and natural resources through public sector activity.

6 The idea that alternative criteria for determining choice of technique may result in different outcomes that are socially and economically beneficial can be found in the work on "appropriate," "intermediate," or "alternative" technology (see, e.g., Schumacher 1973; Dickson 1974).

References

6

The Job Guarantee in a Small Open Economy

William F. Mitchell

1. Introduction

High and persistent unemployment has pervaded almost every OECD country since the mid-1970s. The period of rising unemployment began with the rapid inflation of the mid-1970s. The inflation left an indelible impression on policy-makers who became captives of the resurgent new labour economics and its macroeconomic counterpart, monetarism. The goal of low inflation led to excessively restrictive fiscal and monetary policy stances by OECD governments driven by a false analogy between the household budgetary constraints and government budgetary constraints (Mitchell 1996, 1998). This has resulted in GDP growth in OECD countries being generally below that necessary to absorb the growth in the labour force in combination with rising labour productivity.1

Ultimately, mass unemployment arises because the government budget deficit is too small relative to the desires of the private sector to meet its tax obligations, to save and to hold money for transactions purposes. It is thus a macroeconomic phenomenon and can never be a “real wage” problem as Keynes noted many years ago. The solution to this problem is for government to use deficit spending to introduce a Job Guarantee policy, which simultaneously achieves full employment and price stability (Mitchell 1996, 1998).2 The Job Guarantee approach to full employment is contrary the current policy direction of governments in the OECD economies, which emphasise fiscal consolidation and supply-side reforms like deregulation and privatisation.

The fallacious analogy that government spending, taxation, and debt issue is equivalent to the spending and financing decisions of the household and that governments are supposed to seek financing prior to spending has led to the pursuit of budget surpluses in order to avoid al-