DETERMINATIONS OF THE SIMPLE MULTIPLIER

The following shows two ways to find the money multiplier of \(M_1 \) under the special assumptions used in class. The first one is more direct and simpler but it hides the multiplicative process involved.

Notations:
- \(M \): The money supply as defined by \(M_1 \).
- \(C \): Currency in circulation.
- \(D \): Demand deposits.
- \(R = RR + ER \): Reserves are the sum of required reserves (\(RR \)) and excess reserves (\(ER \)).
- \(B \): Monetary base.
- \(r_d = R/D \): required reserve ratio on demand deposits (\(0 \leq r_d \leq 1 \)).
- \(c = C/D \): Currency-deposit ratio (\(0 \leq c \leq 1 \)).
- \(m = M/B \): \(M_1 \)-multiplier.

Method 1: Using definitions

We know that \(M_1 \) is approximately equal to the sum of currency in circulation (\(C \)) and demand deposits (\(D \)). We also know that the monetary base (\(B \)) is defined as the sum of currency in circulation and reserves (\(R \)):

\[
M \equiv C + D \\
B \equiv C + R
\]

Dividing the first identity by the second one, we have:

\[
\frac{M}{B} \equiv \frac{c+1}{c + r_d}
\]

Therefore, taking the definition of the money-multiplier:

\[
M \equiv m \cdot B \quad \text{with} \quad m \equiv \frac{c+1}{c + r_d}
\]

Knowing that \(B \equiv C + R \) then \(\Delta B \equiv \Delta C + \Delta R \). Assuming that there are no excess reserves in the banking system, if the central bank suddenly increases the quantity of reserves (\(\Delta R > 0 \)), this creates an excess reserve in the banking system and we have:

\[
\Delta M \equiv m \cdot \Delta R \quad \text{or} \quad \Delta M \equiv m \cdot ER
\]

Money is multiplied by the initial amount of excess reserve and the multiplicative process stops when \(ER = 0 \).
Method 2: Using logic

Let us assume that $r_d = 10\% = 0.1$. We have seen that an initial creation of reserves by the Central Bank leads to the following process under special hypotheses:

<table>
<thead>
<tr>
<th>Bank</th>
<th>ΔDD</th>
<th>ΔR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank A</td>
<td>+100</td>
<td>$\Delta R(1 - r_d)$</td>
</tr>
<tr>
<td>Bank A</td>
<td>+90</td>
<td>$\Delta R(1 - r_d)^2$</td>
</tr>
<tr>
<td>Bank B</td>
<td>+81</td>
<td>$\Delta R(1 - r_d)^3$</td>
</tr>
<tr>
<td>Bank C</td>
<td>+72.9</td>
<td>$\Delta R(1 - r_d)^4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Bank Z</td>
<td>+0</td>
<td>$\Delta R(1 - r_d)^n$</td>
</tr>
<tr>
<td>Sum</td>
<td>Banking system</td>
<td>Sum $\Delta DD = +1000$ = S_n</td>
</tr>
</tbody>
</table>

The problem is to find the mathematical formula that leads to $S = 1000$. This will allow determining the analytical formulation of the multiplier. We know that the sum (S_n) is:

$$S_n = \Delta R + \Delta R(1 - r_d) + \Delta R(1 - r_d)^2 + \Delta R(1 - r_d)^3 + \ldots + \Delta R(1 - r_d)^n$$

In order to solve this sum we, first, multiply each side by $(1 - r_d)$:

$$(1 - r_d)S_n = \Delta R(1 - r_d) + \Delta R(1 - r_d)^2 + \Delta R(1 - r_d)^3 + \Delta R(1 - r_d)^4 + \ldots + \Delta R(1 - r_d)^{n+1}$$

Then, we take the difference between the two equations:

$$S_n - (1 - r_d)S_n = \Delta R - \Delta R(1 - r_d)^{n+1}$$

By rearranging we have:

$$S_n = \Delta R \left[1 - \frac{(1 - r_d)^{n+1}}{r_d} \right]$$

If $n \to \infty$ and if $r_d < 1$ then the sum converges. Indeed:

$$S_n = \frac{\Delta R}{r_d} - \frac{\Delta R(1 - r_d)^{n+1}}{r_d} \quad \text{and} \quad \lim_{n\to\infty} \left[\frac{\Delta R(1 - r_d)^{n+1}}{r_d} \right] = 0$$

So:

$$S = \frac{\Delta R}{r_d}$$

Thus, an initial variation of reserve (ΔR) will lead to a variation of M (ΔM) by a multiple amount $m = 1/r_d$:

$$\Delta M = m\Delta R \quad \text{with} \quad m = \frac{1}{r_d}$$

Thus if the central bank can control ΔR, it can control ΔM_1.